Incorporating interspecific interactions and disperal into species distribution models

D. Scott  Rinnan (1), Mark Kot (2), Joshua Lawler (3)

1  Quantitative Ecology and Resource Management Graduate Program, University of Washington, Box 352100, Seattle WA, 98195

2  Department of  Applied Mathematics, University of Washington, Box 353925, Seattle WA, 98195

3  School of Environmental and Forest Sciences, University of Washington, Box 352100, Seattle WA, 98195

Species distribution models (SDMs) provide insight into how changes in climate might shape a species’ future habitat. While SDMs are effective at identifying a species’ realized climatic niche,   they fail to account for many basic ecological processes that also affect the distribution of  a species, such as dispersal ability and interspecific interactions. Here I introduce a hierarchical model   framework that can incorporate information about the dispersal ability of species to yield predictions that are more reflective of the species’ biological limitations. The model combines SDMs with   integrodifference equations to track habitat shifts over time. I then show how this framework can be generalized to multiple species to account for possible interaction effects,  and  apply it  to  a     case study of big sagebrush(Artemisia      tridentata) and the  greater sage-­‐grouse (Centrocercus  urophasianus). The results suggest that many species are more vulnerable to climate change   than predicted by SDMs alone.